ON LINEAR TOPOLOGICAL PROPERTIES OF H^1 ON SPACES OF HOMOGENEOUS TYPE

PAUL F. X. MÜLLER

ABSTRACT. Let (X,d,μ) be a space of homogeneous type. Let $B=\{x\in X: \mu\{x\}=0\}$, then $\mu(B)>0$ implies that $H^1(X,d,\mu)$ contains a complemented copy of $H^1(\delta)$. This applies to Hardy spaces $H^1(\partial\Omega,d,\omega)$ associated to weak solutions of uniformly elliptic operators in divergence form. Under smoothness assumptions of the coefficients of the elliptic operators, we obtain that $H^1(\partial\Omega,d,\omega)$ is isomorphic to $H^1(\delta)$.

Introduction

The motivation for this work was the investigation of linear topological properties of Hardy spaces $H^1(\partial\Omega,d,\omega)$ associated to weak solutions of uniformly elliptic operators in divergence form

$$Lu = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{i,j}(x) \frac{\partial u}{\partial x_j}(x) \right) = 0$$

where $a_{i,j}(x)$ are bounded real measurable functions on a Lipschitz domain Ω (cf. [J-K, F-J-K, C-F-M-S]).

In particular we are interested in the question whether these Hardy spaces are isomorphic to the dyadic $H^{1}(\delta)$ space (cf. [Ma]).

As usual one breaks up this problem into two:

Problem A. Does $H^1(\partial\Omega, d, \omega)$ contain a complemented copy of $H^1(\delta)$?

Problem B. Does $H^1(\delta)$ contain a complemented copy of $H^1(\partial\Omega, d, \omega)$?

By Pelczynski's decomposition method, a positive solution to A and B implies that $H^1(\partial\Omega, d, \omega)$ is isomorphic to $H^1(\delta)$.

The positive solution to Problem A is obtained as a Corollary to our Theorem 1.4. Theorem 1.4 applies also to $H^1_{\rm at}(S_n)$ (cf. [W]). Hence it gives Wojtaszczyk's result that $H^1(\delta)$ is isomorphic to a complemented subspace of $H^1_{\rm at}(S_n)$ without using Alexandrov's result on inner functions in B_n .

Received by the editors August 14, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E35, 35J25, 42B30; Secondary 60G46, 60J60.

(For n = 1 the above-mentioned result is due to Maurey. There E. M. Stein's multiplier theorem for $H^1(D)$ functions is used in an essential way (cf. [Ma, §2].)

The solution of Problem B is obtained in the following way. First we show that $H^1(\partial\Omega,d,\omega)$ is isomorphic to a certain space $H^1_{\text{prob}}(\Omega,\omega)$ of continuous martingales.

Then, by Lemma 2.16 and Proposition 2.13, the probabilistic methods of Maurey (cf. [Ma, §§3 and 4]) (see also Wolniewicz [W]) allows us to show that $H^1_{\text{prob}}(\Omega,\omega)$ is isomorphic to a complemented subspace of $H^1(\delta)$.

Acknowledgement. It is my pleasure to thank Tomasz Wolniewicz for introducing me to his work [W] and the ideas behind it.

1

Definition 1.1. Let (X, d, μ) be a space of homogeneous type [C-W, p. 587]. A function $a \in L^1(X, \mu)$ is an atom for (X, d, μ) if $\int a \, d\mu = 0$ and if there exists a ball $I \subset X$ such that $\sup a \subset I$ and $||a||_{\infty} \leq 1/\mu(I)$.

Remark. For any homogeneous space (X,d,μ) there exists a quasimetric m on $X\times X$, equivalent to d, such that (X,d,μ) is a normal homogeneous space of order α , and such that the atoms for (X,d,μ) are the same as for (X,m,μ) . More precisely, there exists C>0 such that each $a\in L^1(X,\mu)$ is an atom for (X,d,μ) iff $C\cdot a$ is an atom for (X,m,μ) (cf. [M-S-2, pp. 272, 273]). Normal homogeneous spaces of order α are studied in detail in [M-S-1, M-S-2]. From now on we will work with (X,m,μ) ,

Definition 1.2a. Fix $f \in L^2(X, \mu)$. Let

 $||f||_{H^1(X,m,\mu)}=\inf\Big\{\sum |\lambda_i|: \text{ there exists a sequence of atoms } a_j$

for
$$(X, m, \mu)$$
 such that $f = \sum \lambda_i a_i$.

If no such sequence exists, we let $||f||_{H^1(X,m,\mu)} = \infty$. Then

$$H^{1}(X, m, \mu) := \{ f \in L^{1}(X, \mu) : ||f||_{H^{1}(X, m, \mu)} < \infty \}.$$

Remark. $H^1(X, d, \mu)$ and $H^1(X, m, \mu)$ are identical (cf. [M-S-2]).

Definition 1.2b. Let ϕ be a function on X; let f be in $L^1(X,\mu)$. Let $\overline{\alpha} = \frac{\alpha}{2}$. Then

$$\begin{split} L(\phi\,,\overline{\alpha}\,,m) &:= \sup\left\{\frac{|\phi(x)-\phi(y)|}{m(x\,,y)^{\overline{\alpha}}} \colon x\,,y \in X\right\}\,, \\ f_s(x) &:= \sup\left\{\frac{1}{s}\int_X f(y)\phi(y)\,d\mu(y) \colon s \geq 0\,, \text{ and } \\ \sup \phi &\subset B(x\,,s)\,, L(\phi\,,\overline{\alpha}\,,m) \leq s^{-\overline{\alpha}}\,, ||\phi||_\infty \leq 1\right\} \end{split}$$

where $B(x, s) = \{y \in X, m(x, y) < s\}$.

$$f^*(x) := \sup_{s>0} |f_s(x)|.$$

The main result in [M-S-2] gives

Theorem 1.3. There exists C > 0 such that for every $f \in L^1(X, \mu)$ we have

$$\frac{1}{C}||f||_{H^1(X,m,\mu)} \le ||f^*||_{L^1(X)} \le C||f||_{H^1(X,m,\mu)}.$$

For later purposes we single out a special subset of X namely: $B = \{x \in X : \mu(\{x\}) = 0\}$.

The result to be proved in this section is as follows:

Theorem 1.4. If $\mu(B) > 0$ then $H^1(X, m, \mu)$ contains a complemented subspace Y which is isomorphic to the dyadic $H^1(\delta)$.

Example 1.5. Let μ be the counting measure on \mathbb{Z} , m(x,y) = |x-z|, $x,y \in \mathbb{Z}$. Then (\mathbb{Z}, m, μ) is a normal homogeneous space of order 1 which does not satisfy $\mu(B) > 0$.

Examples which satisfy $\mu(B) > 0$ will be discussed in §2.

Remark. Our strategy is as follows: We want to construct a system of functions $f_{ni}: X \to \mathbf{R}$, which is equivalent to the Haar system in $H^1(\delta)$. Then, exploiting the fact that f_{ni} can be chosen (almost) biorthogonal, we will use the orthogonal projection to show that span $\{f_{ni}\}$ is isomorphic to a complemented subspace of $H^1(X, m, \mu)$.

We use the assumption $\mu(B) > 0$ to show that in X there exists a "fat" collection $\mathscr G$ of balls, which behave (practically) like a subcollection of dyadic intervals. Inside each ball in $\mathscr G$ we will find two collections of disjoint balls, $\mathscr E_1, \mathscr E_2 \ (\subseteq \mathscr G)$ which cover two disjoint sets of (almost) the same measure (Lemma 1.9). Moreover for each ball $K \subset \mathscr G$ we will find a function a_K which serves as a good substitute for the characteristic function of K. $(a_K$ can be written as the sum of functions with a known Lipschitz constant (Lemma 1.12)).

Lemmas 1.9 and 1.12 allow us to define functions g_1 , g_2 such that $g_1 - g_2$ behaves like a Haar function (Lemma 1.13). A crucial consequence of our construction is that $|g_1 - g_2|$ and $(g_1 - g_2)^*$ have (essentially) the same support.

Lemma 1.6. Let (X, m, μ) be a homogeneous space. Let $B = \{x \in X : \mu(\{x\}) = 0\}$. If $\mu(B) > 0$ then there exists a family \mathcal{G} of balls in X such that:

- (6a) $I, J \in \mathcal{G}, I \cap J \neq \emptyset$ implies $I \subset J$ or $J \subset I$.
- (6b) $I \subset J$ implies $\mu(I) \leq \mu(J)/2$.
- (6c) $\mu(\{t \in X: t \text{ lies in infinitely many } I \in \mathcal{G}\}) > 0$.

Proof. First we observe that B coincides with $\bigcap_n \bigcup_{x \in B} B(x, 2^{-n})$. Suppose not, then there exists a sequence $\{x_m\} \in B$ such that $\lim x_n = x$ and $x \notin B$. That means $\mu(\{x\}) > 0$. In particular $x_n \neq x$ for all x_n . On the other hand,

by [M-S-1, Theorem 1] there exists $r_x > 0$ such that $B(x, r_x) \setminus \{x\} = \emptyset$ —a contradiction. The construction of \mathscr{G} will be a consequence of the following:

Sublemma. For each ball $I \subset X$ and $\eta > 0$ there exists a finite collection $\mathscr{C} = \{C_i\}$ of pairwise disjoint balls such that

(a)
$$C_i \subset I$$
, $\mu(C_i) \leq \mu(I)/2$.

(b)
$$\mu((B \cap I) \setminus \cup C_i) < 2\eta\mu(B \cap I).$$

Proof of the Sublemma. Fix $\frac{1}{2} > \varepsilon > 0$ depending on η and X.

Step 0. For $x \in I \cap B$, we have $0 = \mu(\{x\}) = \lim \mu(B(x, 2^{-n}))$. Hence for each $x \in I \cap B$ there exists a ball $B_x \subset I$ with center x such that $\mu(B_x) \le \mu(I)/2$. Let $\mathscr{E}_0 := \{B_x : x \in I \cap B\}$. \mathscr{E}_0 is an open covering of $I \cap B$.

By the Vitali Wiener covering lemma [C-W, p. 623] there exists K, depending only on (X,m,μ) , and a pairwise disjoint sequence $\mathscr{D}_0=\{D_m\}$ of balls in \mathscr{E}_0 such that

$$\bigcup (4\cdot K)D_n\supset B\cap I.$$

Here $(4 \cdot K)D_n$ denotes the ball with the same center as D_n but with radius 4K times bigger than that of D_n . This implies

$$\sum_{n=1}^{\infty}\mu(D_n)\geq \frac{1}{C^{4K}}\sum \mu((4K)\cdot(D_n))\geq \frac{1}{C^{4K}}\mu(B\cap I).$$

Here C denotes the doubling constant of the homogeneous space (X, m, μ) . Finally we choose $n_1 \in \mathcal{N}$ such that

$$\sum_{n=1}^{n_1} \mu(D_n) > \frac{1}{2C^4K} \mu(B \cap I).$$

Next we choose $C_n\subset D_n$, balls of a slightly smaller radius such that $\mu(D_n\setminus C_n)\leq \frac{\varepsilon}{2}\mu(D_n)$. In particular

$$\mu(\overline{C}_n \setminus C_n) \le \frac{\varepsilon}{2} \cdot \mu(D_n).$$

 C_1, \ldots, C_{n_1} are the first n_1 elements of \mathscr{C} .

To prepare our next step, we let $E_1 := \{x \in B \cap I : x \notin \bigcup \overline{C}_n\}$, $\widetilde{E}_1 := \{x \in B \cap I : x \notin \bigcup C_n\}$. First $\mu(\widetilde{E}_1 \setminus E_1) \leq \frac{\varepsilon}{2} \mu(I \cap B)$. Second

$$\begin{split} \mu(E_1) & \leq \mu(\widetilde{E}_1) \leq \mu(I \cap B) - \sum \mu(C_n) \\ & \leq \mu(I \cap B) - \left(1 - \frac{\varepsilon}{2}\right) \sum \mu(D_n) \\ & \leq \mu(I \cap B) \bigg(1 - \left(1 - \frac{\varepsilon}{2}\right) \frac{1}{2C^{4K}}\bigg). \end{split}$$

Step 1. For $x \in E_1$, there exists a ball $B_x \subset E_1$, $x \in B_x$, such that $\mu(B_x) < \mu(I)/2$. This implies in particular that $B_x \cap (\bigcup C_n) = \emptyset$. Let

$$\mathcal{E}_1 = \{B_x : x \in E_1, B_x \subset E_1, \mu(B_x) \le \mu(I)/2\}.$$

 \mathscr{E}_1 is an open covering of E_1 . Repeating the argument of Step 0 we obtain a collection $\mathcal{D}_1 = \{D_n^1\}$ of pairwise disjoint balls such that for n_2 large enough:

$$\sum_{n=1}^{n_2} \mu(D_n^1) \ge \mu(E_1) \frac{1}{2C^{4K}}.$$

Next choose $C_n^1 \subset D_n^1$ such that $\mu(D_n^1 \setminus C_n^1) \leq \varepsilon \mu(D_n^1)$. Then $C_{n_1+j} := C_j^1$, $j \leq n_2$ are the next n_2 elements of $\mathscr C$. Again for

$$E_2:=\left\{x\in E_1\colon x\notin \bigcup_{n_1}^{n_2}\overline{C}_j\right\},\quad \widetilde{E}_2:=\left\{x\in E_1\colon x\notin \bigcup_{n_1}^{n_2}C_j\right\}$$

we have

$$\begin{split} \mu(\widetilde{E}_2 \setminus E_2) &\leq \varepsilon \mu(E_1)\,,\\ \mu(E_2) &\leq \mu(\widetilde{E}_2) \leq \mu(E_1) \bigg(1 - (1 - \varepsilon) \frac{1}{2C^{4K}}\bigg). \end{split}$$

After Step p we have constructed pairwise disjoint balls $C_1, \ldots, C_{n_1 + \cdots + n_n}$ and sets E_1,\ldots,E_{p+1} ; $\widetilde{E}_1,\ldots,\widetilde{E}_{p+1}$ such that for $1\leq j\leq p$

- $(1) \ \widetilde{E}_i \subset E_{i-1} \subset \widetilde{E}_{i-1},$
- $(2) \ \mu(\widetilde{E}_i \setminus E_j) \le \varepsilon \mu(E_j),$
- $(3) \ \mu(\widetilde{E}_{j}) \leq \mu(B \cap I)(1 1/4C^{4K})^{j},$ $(4) \ (I \cap B) \setminus \bigcup_{i=1}^{n_{1} + \dots + n_{j}} C_{i} = (\widetilde{E}_{1} \setminus E_{1}) \cup \dots \cup (\widetilde{E}_{j} \setminus E_{j}) \cup \widetilde{E}_{j}.$
- ((3) follows from the assumption $0 < \varepsilon < \frac{1}{2}$.)

Let $\delta = 1/4C^{4K}$. Then (1) and (4) imply that

$$\mu\bigg((I\cap B)\setminus\bigcup_{i=1}^{n_1+\cdots+n_j}C_i\bigg)\leq \bigg(\sum_{i=1}^{j}\varepsilon(1-\delta)^{i-1}+(1-\delta)^{j+1}\bigg)\mu(I\cap B).$$

Finally, we put $\varepsilon = \eta \cdot \frac{\delta}{2}$ and for p big enough the result follows. Here ends the proof of the sublemma.

Now we proceed as follows: Choose a ball I such that $\mu(B \cap I) > 0$ and put $G_1 = \{I\}$. Suppose we have already constructed G_1 , \ldots , G_{p-1} , then we first choose $\varepsilon_J>0\,,\ J\in G_{p-1}$ such that $\sum \varepsilon_J<4^{-p}$. Fix $J\in G_{p-1}$ and apply the sublemma to ε_I and $(J \cap B)$. We denote the resulting family by $G_1(J)$ and put $G_p = \bigcup_{J \in G_{n-1}} G_1(J)$. Moreover, we have

$$\mu(B \cap G_{p-1} \setminus G_p) \le \mu(B \cap I)4^{-p}.$$

Finally $\mathcal{G} = \bigcup_n G_n$ satisfies (6a), (6b), and (6c).

Notation 1.7. Let $E \subset X$, $\mathscr{E} \subset \mathscr{G}$, $I \in \mathscr{G}$ be given. Then we denote

$$E \cap \mathscr{E} = \{J \in \mathscr{E}: J \subset E\}, \quad \mathscr{E}^* = \bigcup_{J \in \mathscr{E}} J,$$

 $\sigma(\mathcal{E}) = \{t \in X : t \text{ lies in infinitely many } K \in \mathcal{E}\}.$

Later, we reserve the letter σ for $\sigma(\mathcal{G})$.

$$G_1(I) = \left\{J \subseteq I \colon J \in \mathcal{G} \,,\, J \text{ maximal} \right\}, \quad G_n(I) = \bigcup_{J \in G_{n-1}(I)} G_1(J).$$

For each I we have $G_n^*(I) \supset G_{n+1}^*(I)$ and $\sigma \cap I = \bigcap G_n^*(I)$. We say that $I \in \mathcal{G}$ lies below \mathcal{E} iff

- (a) $I \subset \mathscr{E}^*$,
- (b) for each $J \in \mathcal{E}$ with $J \cap I \neq 0$ we have $J \supset I$,
- (c) if $I' \in \mathcal{G}$ satisfies (a), (b) and $I' \cap I \neq \emptyset$ then $I' \subset I$.

For sets $F, G \subset X$ we let

$$m(F,G) := \inf\{m(x,y): x \in F, y \in G\}.$$

Lemma 1.8. Let K be a ball in (X, m, μ) , $\varepsilon > 0$. Let $I \subset K$ be a ball in X with center x_0 and radius r. Then there exists a ball $J \subset I$, $\tau > 0$ such that $\mu(I \setminus J) < \varepsilon$ and $m(J, K \cap \mathcal{C}I) > \tau$.

Proof. First by inner regularity there exists s < r such that

$$|\mu(J(x_0,s)) - \mu(I)| < \varepsilon.$$

Next fix $z_1 \in J$, $z_2 \in K \cap \mathcal{C}I$. We have $m(x_0, z_1) = s - \delta$ and $m(x_0, z_2) = r + \eta$ for some positive η, δ^+ . Then, invoking that X is of order α :

$$(\operatorname{diam} K)^{1-\alpha} m(z_1, z_2)^{\alpha} > |m(z_1, x_0) - m(z_2, x_0)|$$

= $|s - \delta - (r + \eta)| > |s - r|$.

Hence $\tau := (|s - r|/\operatorname{diam} K^{1-\alpha})^{1/\alpha}$ is the right choice.

Lemma 1.9. Let K be a ball in X with $\mu(K \cap \sigma) \neq 0$. For $\varepsilon > 0$ there exist $\tau > 0$, finite collections of pairwise disjoint balls $\mathscr{E}_j \subset \mathscr{F}$ such that

(9a)
$$m(\mathcal{E}_1^*, \mathcal{E}_2^*) > \tau,$$

(9b)
$$m(\mathcal{E}_{i}^{*}, CK) > \tau,$$

(9c)
$$\mu(\mathcal{E}_1^* \cup \mathcal{E}_2^*) \ge (1 - \varepsilon)\mu(K \cap \sigma),$$

(9d)
$$|\mu(\mathcal{E}_1^*) - \mu(\mathcal{E}_2^*)| \le \varepsilon \mu(K \cap \sigma).$$

Proof. By Lebesgue's theorem on differentiation, there exists $I_j \in \mathcal{G} \cap K$, pairwise disjoint such that

$$\frac{\mu(I_j\cap\sigma)}{\mu(I_j)}\geq (1-\varepsilon)\,,\quad \mu\bigg(\bigcup I_j\setminus K\cap\sigma\bigg)\leq \varepsilon.$$

Let $\mathscr I$ be a finite subcollection of $\{I_j\}$ such that $\mu(\mathscr I^*) > (1-\varepsilon)\mu(\bigcup I_j)$. Fix $I \in \mathscr I$. For large n there exist finite disjoint $\mathscr D_1(I)$, $\mathscr D_2(I) \subset G_n(I)$ such that

$$|\mu(\mathcal{D}_{i}^{*}(I)) - \mu(I \cap \sigma)\frac{1}{2}| \le \varepsilon\mu(I), \quad j \in \{1, 2\}.$$

Next choose $K \in \mathscr{D}_j(I)$. There exists a ball $K' \subset K$ with m(K', CK) > 0, $\mu(K \setminus K') < \varepsilon \mu(K)$. Next we choose $n' \in \mathbb{N}$ large enough and obtain for $K' \cap G_{n'} := \mathscr{E}(K)$, the following estimate, $|\mu(K' \cap \sigma) - \mu(\mathscr{E}^*(K))| \le \varepsilon \mu(K)$.

Finally, we put

$$\mathcal{E}_1 := \bigcup_{I \in \mathcal{I}} \bigcup_{K \in \mathcal{D}_1(I)} \mathcal{E}(K) \qquad \mathcal{E}_2 := \bigcup_{I \in \mathcal{I}} \bigcup_{K \in \mathcal{D}_2(I)} \mathcal{E}(K).$$

Taking into account that \mathcal{I} , $\mathcal{D}_i(I)$ are finite families, we are done.

Remark. We know now how to construct a "tree of sets" in X and we wish to associate "Haar functions" to this tree. The most obvious choice would be to take consecutive differences of characteristic functions as "Haar functions" (cf. [Mü, §2]). However, for technical reasons, we have to introduce certain approximations of characteristic functions. This approximation procedure is explained in Lemmas 1.12 and 1.13.

Definition 1.10. Let I be a ball in X with radius r and center x_0 . Then f_I is defined as follows:

$$f_I(x) = g(x) \frac{\mu(I)}{\int g(x) \, d\mu}$$

where

$$g(x) = \begin{cases} 1 & \text{if } m(x, x_0) \leq \frac{r}{2}, \\ 2 - \frac{2m(x, x_0)}{r} & \text{if } \frac{r}{2} \leq m(x, x_0) \leq r, \\ 0 & \text{if } m(X, x_0) \geq r. \end{cases}$$

Remark 1.11. There exist C > 0 and $\eta > 1$ such that for each I

$$||f_I||_{\infty} \leq C \ \mu(\{x \in I : f_I < \tfrac{1}{2}\}) < \eta \mu(I) \,, \qquad \int f_I(x) \, d\mu = \mu(I).$$

Moreover, we have the following: $x, y \in I$ implies

$$|f_I(x) - f_I(y)| \le 2\left(\frac{m(x,y)}{r}\right)^{\alpha}.$$

Indeed.

$$|f_I(x) - f_I(y)| \le 2|(m(x, x_0) - m(y, x_0))|$$

 $\le 2m(x, y)^{\alpha} \cdot r^{1-\alpha} \le 2\left(\frac{m(x, y)}{r}\right)^{\alpha}.$

Lemma 1.12. For $\varepsilon > 0$, $K \in \mathcal{G}$, there exist $m_1 < m_2 \in \mathbb{N}$, $\mathcal{K} \subset G_{m_1}(K) \cup \cdots \cup G_{m_r}(K)$ such that for $\alpha_K = \sum \{f_I : I \in \mathcal{K}\}$ we have

(12a)
$$\mu(\lbrace x \in K : a_K(x) < \frac{1}{2} \rbrace \cap \sigma) \le \varepsilon \mu(K \cap \sigma),$$

(12b)
$$\mu(K \cap \sigma) = \int a_K d\mu,$$

$$||a_K||_{\infty} \le 3 \cdot C.$$

Proof.

Step 0. Choose $n_0 \in \mathbb{N}$ such that $\mu(G_{n_0}^*(K) \setminus \sigma) < \frac{\varepsilon}{4}$. Put

$$g_0(x) = \sum \{ f_L(x) : L \in G_{n_0}(K) \}.$$

Taking into account that $L, L' \in G_{n_0}(K)$ implies $L \cap L' = \emptyset$ we see that $\mu(\{g_0 < \frac{1}{2}\} \cap \sigma) \le \eta \mu(K \cap \sigma)$.

Step 1. $E_0 := \{g_0 < \frac{1}{2}\} \cap K$. Next choose $n_1 > n_0$ such that

$$\begin{split} \mu(G_{n_1}^*(E_0) \setminus \sigma) &\leq \varepsilon/4^2 \,, \\ g_1 &= \sum \{ f_L : L \in G_{n_1}(E_0) \} \,, \\ E_1 &:= \{ x \in g_0(x) + g_1(x) \leq \frac{1}{2} \} \cap K \end{split}$$

and again

$$\mu(E_1 \cap \sigma) \le \mu(\{x \in E_0 : g_1 \le \frac{1}{2}\} \cap \sigma)$$

$$\le \eta \mu(E_0 \cap \sigma) \le \eta^2 \mu(K \cap \sigma).$$

Step k. Choose $n_k > n_{k-1}$ such that

$$\mu(G_{n_k}(E_{k-1})\setminus\sigma)\leq \varepsilon/4_{k+1}.$$

Let $g_k=\sum\{f_L:L\in G_{n_k}(E_{k-1})\}$. Next, let $E_k=\{x:(g_0+\cdots+g_k)(x)<\frac12\}\cap K$. Then,

$$\begin{split} \mu(E_k \cap \sigma) &\leq \mu(\{x \in E_{k-1} \colon g_k < \frac{1}{2}\} \cap \sigma) \\ &\leq \eta \mu(E_{k-1} \cap \sigma) \leq \eta^{k+1} \mu(K \cap \sigma). \end{split}$$

Let $k \in \mathbb{N}$ be big enough and put $f = \sum_{i=0}^{k} g_i$. Then

$$a_K(x) := \frac{f(x)}{\int f(x) \, d\mu} \mu(K \cap \sigma)$$

is the right choice.

Lemma 1.13. For $I \in \mathcal{G}$, $\varepsilon > 0$, there exists $\tau_0 > 0$, $\tilde{l} \in \mathbb{N}$ such that for $l > \tilde{l}$ there exist collections of balls $\mathcal{E}_j \subset \bigcup_{k=l}^\infty G_k(I)$, $j \in \{0,1\}$, positive real numbers c_K , $K \in \mathcal{E}_j$ with $1 \le c_K < C$ such that for $g_j := \sum \{f_K c_K : K \in \mathcal{E}_j\}$ the following holds:

(13a)
$$\mu(\mathcal{E}_1^* \cup \mathcal{E}_0^*) \ge (1 - \varepsilon)\mu(I \cap \sigma),$$

(13b)
$$m(\mathcal{E}_1^*, \mathcal{E}_0^*) \ge \tau_0,$$

(13c)
$$m(\mathcal{E}_{j}^{*}, \mathfrak{C}I) \geq \tau_{0}, \qquad j \in \{0, 1\},$$

(13d)
$$\left| \int g_0 - \int g_1 \right| \le \varepsilon \mu(I),$$

(13e)
$$\mu(\{|g_1 + g_2| < \frac{1}{2}\} \cap \sigma) \le \mu(I \cap \sigma)\varepsilon,$$

(13f)
$$||g_j||_{\infty} \le C, \quad j \in \{0, 1\}.$$

Proof. First apply Lemma 1.9 to obtain finite collections of pairwise disjoint balls $\mathscr{D}_1, \mathscr{D}_2 \subset \mathscr{G}$ and which satisfy (9a), (9b), (9c), (9d). Next fix $\tilde{l} \in \mathbb{N}$, such that $J \in \mathscr{D}_j$, $K \in G_{\tilde{l}}$, $I \cap K \neq \emptyset$, imply $J \supset K$. To $l > \tilde{l}$, $K \in \mathscr{D}_j^* \cap G_l$ and $\varepsilon > 0$ we apply Lemma 1.12 to obtain $a_K(x)$. Summing up we obtain

$$g_j(x) = \sum \{\alpha_K(x) \colon K \in \mathcal{D}_j^* \cap G_l\}$$

which satisfies (13d), (13e), (13f). $\mathcal{E}_j := \mathcal{D}_j^* \cap G_l$ satisfies (13a), (13b), (13c). Suppose f can be written as a sum of functions like $(g_1 - g_2)$. Then the behavior of its maximal function f^* can easily be analyzed.

Lemma 1.14. Let $\{I_i\}$ be a sequence of pairwise disjoint balls with center $\{x_l\}$. Let $\{f_i\}$ be a sequence of continuous functions such that $|f_i| \leq C \cdot \chi_{I_i}$, and

$$\left| \int_{I_i} f_i \, d\mu \right| \leq \varepsilon_i \mu(I_i).$$

Then for $f = \sum f_i$ we have the following estimate

$$\begin{split} (f)_r(x) & \leq \mu \bigg(\bigcup I_j\bigg) \sup\{(\operatorname{diam} I_j)^{\overline{\alpha}} r^{\overline{\alpha}-1} \colon m(I_j\,,x) < 2r\} \\ & + \bigg(\sum \varepsilon_i\bigg) \cdot \sup\{\mu(I_j) \cdot r^{-1} \colon m(I_j\,,x) 2r\}\,. \end{split}$$

Proof. To estimate $(f)_r(x)$ we choose ϕ such that $\operatorname{supp} \phi \subset B(x,r)$, $L(\phi, \overline{\alpha}, m) \leq r^{-\overline{\alpha}}$, $||\phi||_{\infty} < 1$. Then

$$\begin{split} \int f \phi &\leq \sum_{j} \int_{I_{j}} f_{j}(\phi - \phi(x_{j})) + \int_{I_{j}} f_{j}\phi(x_{j}) \\ &\leq \sum_{\{j: m(I_{j}, x) < 2r\}} \operatorname{diam}(I_{j})^{\overline{\alpha}}, r^{-\overline{\alpha}} \cdot \mu(I_{j}) \cdot C \\ &+ \left(\sum \varepsilon_{i}\right) \cdot \sup\{\mu(I_{j}) : m(I_{j}, x) \leq 2r\}. \end{split}$$

Remark. (a) Let $m(x, \bigcup I_j) = \tau > 0$. Let f be as above, and assume $\mu(\bigcup I_j) \le 1$. Then $\sup_i \mu(I_i) < \delta$, and $r > r_0$ implies

$$(f)_r(x) \le \left(1 + \sum \varepsilon_j\right) \cdot \max\left\{\frac{\delta^{\overline{\alpha}}}{r_0} \frac{1}{r_0}, \frac{\delta}{r_0}\right\}.$$

(b) $r < \frac{\tau}{2}$ implies $(f)_r(x) = 0$.

Lemma 1.15. Let \mathscr{G} be a family of balls in X which satisfies (6a)–(6c) of Lemma 1.6. Then there exists $C \in \mathbb{R}^+$ such that for any sequence $\varepsilon_n > 0$ there exist:

- (i) finite collections of balls $\{\mathcal{E}_{ni}\}$, $n \in \mathbb{N}$, $0 \le i \le 2^n 1$.
- (ii) real numbers $c_K \in \mathbb{R}^+$, $K \in \mathcal{E}_{ni}$ with $c_K \leq c$, such that for

$$f_{n,i} := \sum \{c_K f_K : K \in \mathcal{E}_{n+1,2i}\} - \sum \{c_K f_K : K \in \mathcal{E}_{n+1,2i+1}\}$$

the following holds:

(15.1)
$$f_{n,i}$$
 is supported on a subset of $\mathscr{E}_{n,i}^*$; $||f_{n,i}||_{\infty} \leq C$.

(15.2)
$$\mu(\{|f_{ni}| < \frac{1}{2}\} \cap \sigma) < \mu(\mathcal{E}_{ni}^* \cap \sigma) \cdot \varepsilon_n.$$

(a) for each r>0, $x\notin \mathscr{E}_{n,i}^*$ implies $(f_{n,i})_r(x)\leq \varepsilon_n$, (b) there exists $t_n\downarrow 0$ such that for $r_0:=1$, $r_n:=t_{n-1}/2$,

(15.3) (b) there exists $t_n \downarrow 0$ such that for $r_0 := 1$, $r_n := t_{n-1}/2$, and $x \in X$ the following holds: $(f_{n,i})_r(x) \le \varepsilon_n$ for $r \ge r_n$, $var\{f_{n,i}(y): y \in B(x,t)\} \le \varepsilon_n$, $t < t_n$.

(15.4)
$$\left| \int f_{m,i} f_{n,j} \right| \leq \min \{ \varepsilon_n, \varepsilon_m \}.$$

(15.5)
$$(a) \ 2^{-n}/C \le \mu(\mathcal{E}_{n,i}^*) \le 2^{-n}C,$$

$$(b) \ \mathcal{E}_{n,2i}^* \cup \mathcal{E}_{n+1,2i+1}^* \subset \mathcal{E}_{n,i}^* \ and \ \mathcal{E}_{n,i}^* \cap \mathcal{E}_{n,j}^* = \emptyset \ for \ i \ne j.$$

(15.6)
$$L \in \mathcal{E}_{n,i}, K \in \mathcal{E}_{m,i}, L \subset K \text{ implies } m \leq n.$$

(15.7)
$$L \in \mathcal{E}_{m,j}$$
 and $m \leq n$, implies $\mu(L \cap \mathcal{E}_{n,i}^*) \leq \mu(L) \cdot 2^{-n} \cdot 2^m \cdot C$. *Proof.*

Step 0. Choose $I \in \mathcal{G}$ with $\mu(I \cap \sigma(\mathcal{G})) \ge \mu(I)/2$ and $\mu(I) \le 1$, $r_0 := 1$. Then for $\varepsilon_0 > 0$ there exists $r_0 > 0$, $\widetilde{l} \in \mathbb{N}$ such that for $l \ge \widetilde{l}$ there exist

(i) finite collections of balls

$$\mathscr{E}_{1,j}(I,l) \subset \bigcup_{k=1}^{\infty} G_k(I), \qquad j \in \{0,1\}.$$

(ii) real numbers $c_K \in \mathbf{R}^+$, $K \in \mathcal{E}_{1,j}(I,l)$ with $c_K < c$ such that for

$$g_{1,j}(l) := \sum \{ f_K c_K : K \in \mathcal{E}_{1,j}(I,l) \}, \quad j \in \{0,1\},$$

the following holds:

(a)
$$\mu(\mathcal{E}_{1,0}^*(I,l) \cup \mathcal{E}_{1,1}^*(I,l)) > (1-\varepsilon)\mu(I \cap \sigma),$$

(b)
$$m(\mathcal{E}_{1,0}^{*}(I,l), \quad \mathcal{E}_{1,1}^{*}(I,l)) \geq \tau_{0},$$

(c)
$$m(\mathcal{E}_{1,j}^{*}(I,l), \mathcal{C}I) \geq \tau_{0},$$

$$||g_{1,j}(l)||_{\infty} \leq C,$$

(e)
$$\left| \int g_{1,0}(l) - \int g_{1,1}(l) \right| \le \varepsilon_0 \mu(I),$$

(f)
$$\mu(\{g_{1,0}(l)+g_{1,1}(l)<\tfrac{1}{2}\}\cap\sigma)\leq\mu(I\cap\sigma)\cdot\varepsilon_0.$$

Finally, we choose $l_0 \in \mathbb{N}$ such that

$$\left(\frac{2^{-l_0\alpha}}{r_0}\right)\frac{1}{r_0} + \frac{2^{-l_0}}{r_0} < \varepsilon_0$$

and let

$$f_{00} := g_{1,0}(l_0) - g_{1,1}(l_0), \quad \mathscr{E}_{1,j} := \mathscr{E}_{1,j}(I, l_0), \qquad j \in \{0, 1\}.$$

For $f_{0,0}$ there exists $t_0 > 0$ such that for $t < t_0$, $x \in X$:

$$\operatorname{var}\{f_{0,0}(y), y \in B(x,t)\} < \varepsilon_0.$$

Step n. We are given $\mathcal{E}_{n,i}$, $t_{n-1} > 0$, $\varepsilon_n > 0$ and $r_n := t_{n-1}/2$.

Fix $J \in \mathcal{G}$ below \mathcal{E}_{ni} . By Lemma 1.13 there exist $\tau(J) > 0$ and $\tilde{l} \in \mathbb{N}$ such that for $l > \tilde{l}$ we find:

- (i) finite collections of balls $\mathscr{E}_{n+1,2i+j}(J,l)$ contained in $\bigcup_{k=l}^{\infty} G_k(J)$.
- (ii) real numbers $c_K \in \mathbb{R}^+$, $K \in \mathcal{E}_{n+1, 2i+1}(J, l)$ such that for

$$g_i(J, l) = \sum \{ f_K c_K : K \in \mathcal{E}_{n+1, 2i+1}(J, l) \}$$

and

$$A_j := \mathscr{E}_{n+1,2i+j}^*(J,l)$$

the following holds:

(a)
$$\mu(A_0 \cup A_1) > (1 - \varepsilon_n)\mu(J \cap \sigma),$$

$$(b) m(A_0, A_1) > \tau(J),$$

(c)
$$m(A, \mathcal{C}J) > \tau(J)$$

$$||g_i(J,l)||_{\infty} \leq C,$$

(e)
$$\left| \int g_0(J,l) - \int g_1(J,l) \right| \le \varepsilon_n \mu(J),$$

(f)
$$\mu(\{g_1(J,l) + g_2(J,l)\}) < \frac{1}{2}\} \cap \sigma) \le \frac{1}{8^n} \mu(J \cap \sigma).$$

Finally, we choose l(J) such that

$$\max\{2^{-l(J)\overline{\alpha}}\cdot r_n^{-\overline{\alpha}+1}, 2^{-l(J)\overline{\alpha}}\cdot \tau(J)^{-\overline{\alpha}+1}, 2^{-l(J)}\cdot \tau(J)\} < \varepsilon_n.$$

We execute this construction for every J below $\mathscr{E}_{n,i}$. Then we put

$$\tau_n = \min\{\tau(J) : J \text{ below } \mathscr{E}_{n,i}\} \,, \quad l_n = \max\{l(J) : J \text{ below } \mathscr{E}_{n,i}\} \,.$$

We let

$$\begin{split} &f_{n,i} := \sum \{ g_0(J,l_n) - g_1(J,l_n) \colon J \text{ below } \mathscr{E}_{n,i} \} \,, \\ &\mathscr{E}_{n+1,2i+1} := \bigcup \{ \mathscr{E}_{n+1,2i+j}(J,l_n) \colon J \text{ below } \mathscr{E}_{ni} \}. \end{split}$$

One should remark that the first component in $\max(,)$ which defines l(J) is needed to ensure (15.3)(b), whereas the second and third component take care of (15.3)(a). We will use them to obtain the majorization

$$\int \sup_{r} (f)_{r} d\mu \leq C \left\| \sum a_{mi} h_{mi} \right\|_{H^{1}(\delta)}.$$

Finally, we choose $t_n < t_{n-1}$ such that for $x \in X$

$$\operatorname{var}\{f_{n,i}(y): y \in B(x,t)\} < \varepsilon_n, \qquad t \in t_n.$$

Verification of (15.1)-(15.7): Except for point (3) everything is clear: Fix $f_{n,i}$: Let $\{I_j\}$ denote the balls in $\mathscr G$ which are $\mathscr E_{n,i}$; then $f_{n,i}$ has the following representation: $f_{n,i} = \sum f_k$ where f_i is supported on a subset of I_j and

$$m(\operatorname{supp} f_k, \mathfrak{C}I_k) > \tau_n, \quad \int f_k = \varepsilon_k \mu(I_k), \quad \left|\left|f_k\right|\right|_{\infty} \leq C.$$

Hence $x \notin \mathcal{E}_{n,i}^*$ implies $m(x, \bigcup I_i) > \tau_n$. By Lemma 1.14 we have

$$(f_{n,i})_r(x) = 0$$
 for $r < \tau_n/2$, $(f_{n,i})_r(x) \le \varepsilon_n$ for $r > \tau_n/2$.

(This follows from our choice of l_n in Step n.) 3(a) is thus verified. 3(b) follows again by the choice of l_n and the estimates in Lemma 1.14.

Proposition 1.16. Let $\{\mathcal{E}_{ni,}\}$ and $\{f_{n,i}\}$ satisfy conditions (15.1) to (15.7) of Lemma 1.15. Then $\operatorname{span}\{f_{n,i}\}$ in $H^1(X)$ is isomorphic to a complemented subspace Y of $H^1(X)$, where Y is isomorphic to $H^1(\delta)$.

Proof. Given a finite linear combination $f = \sum a_{m,j} f_{m,j}$ we have to show that there exists C > 0 such that

$$\frac{1}{C} \left\| \sum a_{m,j} h_{m,j} \right\|_{H^{1}(\delta)} \le \|f\|_{H^{1}(X)} \le C \left\| \sum a_{m,j} h_{m,h} \right\|_{H^{1}(\delta)}.$$

We start with the right-hand inequality.

Case 1. $x \notin \bigcup_{n} \bigcup_{i} \mathcal{E}_{ni}^{*}$ then by (15.3)(a) for each r > 0,

$$(f)_r(x) \le \left(\sum 2^m \varepsilon_m\right) \sup |a_{m,j}|.$$

Case 2. $x \in \bigcup_n \bigcup_i \mathcal{E}_{ni}^*$. There exists (m,j) such that $x \in \mathcal{E}_{(m,j)}^*$. If $x \notin \bigcap_n \bigcup \mathcal{E}_{ni}^*$ then there exists a minimal dyadic interval (m_0, j_0) such that $x \in \mathcal{E}_{(m_0,j_0)}$. Fix r > 0, and choose $n \in \mathbb{N}$ such that $r_{n+1} \le r < r_n$. Then by (15.3)

$$(f)_r(x) \le \left| \sum_{m=1}^{\max(n,m_0)} a_{m,j} f_{m,j} \right| (x) + \left(\sum_m \varepsilon_m 2^m \right) \sup |a_{m,j}| \cdot \chi \mathcal{E}_{00}^*$$

if $x \in \bigcap_n \bigcup \mathscr{E}_{ni}^*$. Then we simply get

$$(f)_r(x) \le \left| \sum_{m=1}^n a_{m,j} f_{m,j} \right| (x) + \left(\sum_m \varepsilon_m 2^m \right) \sup |a_{m,j}| \chi \mathcal{E}_{00}^*$$

The left-hand inequality $\sup_r(f)_r(x) \ge \sup_n \sup_{r_n < t < t_n}(f)_r(x)$ by (15.3)(b) this expression is bigger than

$$\sup_n \left| \sum_{m=0}^n a_{m,j} f_{m,j}(x) \right| - \left(\sum \varepsilon_m 2^m \right) \sup |a_{m,j}| \chi \mathscr{E}_{00}^*(x) \,.$$

Hence we obtain the minorization: (using (15.2), (15.5)(a), (15.5)(b))

$$\int \sup_{r} (f)_{r}(x) \ge \left\| \sum_{j} a_{m,j} h_{m,j} \right\|_{H^{1}} \left(1 - \sum_{j} \varepsilon_{m} 2^{m} \right) \cdot C.$$

It remains to check that span $\{f_{n,i}\}$ is isomorphic to a *complemented* subspace of $H^1(X)$. We do this by verifying the following Claim 17.

$$g: BMO(\delta) \rightarrow BMO(X)$$

 $h_{n,i} \rightarrow f_{n,i}$

is bounded.

Proof of Claim 17. Fix $\{a_{ni,}\}\in \mathbf{R}$ and let $f=\sum a_{n,i}f_{n,i}$. By construction, this sum may be written as $f=\sum b_K(f_K\cdot c_K)$ where c_K is given by Lemma 1.13. Let $\mathscr{E}:=\bigcup\mathscr{E}_{n,i}$. For $K\in\mathscr{E}$ we let $\mathscr{E}(K)=(n,i)$ iff $K\in\mathscr{E}_{n,i}$. Hence b_K equals $a_{\mathscr{E}(K)}$. Fix a ball $I\subset X$ and let

$$\begin{split} E_1 &:= \{K \in \mathscr{E} \colon \mathrm{diam}(K) > \mathrm{diam}(I) \text{ and } K \cap I \neq \emptyset\}, \\ E_2 &:= \{K \in \mathscr{E} \colon \mathrm{diam}(K) \leq \mathrm{diam}(I) \text{ and } K \cap I \neq \emptyset\}. \end{split}$$

Let $\mathscr I$ denote the maximal subsets of E_2 . It is clear that $\mu(\mathscr I^*) \leq C \cdot \mu(I)$ and $E_2 = \mathscr E \cap \mathscr I^*$. For $k \in \mathbb N_0$ we also introduce:

$$E_1^k := \{ L \in E_1 : \operatorname{diam}(I)2^k \le \operatorname{diam}(L) \le \operatorname{diam}(I)2^{k+1} \}.$$

Independent of k, the cardinality of E_1^k is bounded by a constant only depending on X (cf. [C-W, p. 624]. This uses also that $\mathcal{E} \subset \mathcal{F}$ and the fact that X is normal).

Finally, we let

$$f_i = \sum \{b_K(f_K \cdot c_K) : K \in E_i\}; \quad j \in \{1, 2\},$$

and let x_0 be the center of I, $x \in I$. Now we estimate (using Remark 1.10)

$$\begin{split} |f_1(x) - f_1(x_0)| &\leq \sum_{K \in E_1} c_K |b_K| \, |f_K(x) - f_K(x_0)| \\ &\leq c \cdot \sum_k \sum_{K \in E_1^k} |b_K| \bigg(\frac{m(x\,,x_0)}{\operatorname{diam}(I)2^k} \bigg)^\alpha \\ &\leq C_\alpha \sup |b_K| = C_\alpha \sup |a_{ni}| \,. \end{split}$$

Hence

$$\left(\frac{1}{\mu(I)} \int_{I} (f_{1}(x) - f_{1}(x_{0}))^{2} d\mu\right)^{1/2} \leq \frac{\mu(I)}{\mu(I)} C_{\alpha} \sup |b_{K}|.$$

Next we consider f_2 :

$$\begin{split} &\left(\int_{I} \left(f_{2}(x)\right)^{2}\right)^{1/2} \leq \left(\int_{\mathcal{I}^{\star}} \left(\sum_{L \in \mathcal{I}} \sum_{K \subset L} c_{K} \cdot f_{K} b_{K}\right)^{2}\right)^{1/2} \\ &\leq \left(\sum_{L \in \mathcal{I}} \int_{L} \left(\sum_{\{(m,j):(m,j) \subseteq \mathcal{E}(L)\}} f_{m,j} a_{m,j}\right)^{2}\right)^{1/2} + \left(\sum_{L \in \mathcal{I}} \int_{L} f_{\mathcal{E}(L)}^{2} a_{\mathcal{E}(L)}^{2}\right)^{1/2}. \end{split}$$

This inequality holds by 15.6

$$\begin{split} & \leq \bigg(\sum_{L \in \mathcal{I}} \sum_{\{(m,j):(m,j) \subset \mathcal{E}(L)\}} \int_{L} f_{m,j}^{2} a_{m,j}^{2} \bigg)^{1/2} 2 \\ & \leq \bigg(\sum_{L \in \mathcal{I}} \sum_{\{(m,j):(m,j) \subset \mathcal{E}(L)\}} \mu(L \cap \mathcal{E}_{m,j}^{*}) a_{m,j}^{2} \bigg)^{1/2} 2. \end{split}$$

Let $\mathscr{E}(L) = (n_L, i_L)$. Then this last expression may be estimated using 15.7) by

$$\left(\sum_{L \in \mathcal{F}} \sum_{\{(m,j) \subset (n_L,i_L)\}} \mu(L) \cdot 2^{-m} 2^{+n_L} a_{m,j}^2\right)^{1/2} \\
\leq c \cdot \mu(\mathcal{F}^*)^{1/2} \left\| \sum_{m,j} a_{m,j} h_{m,j} \right\|_{BMO(\delta)} \\
\leq (\mu(I)^{1/2}) \left\| \sum_{m,j} a_{m,j} h_{m,j} \right\|_{BMO(\delta)} \cdot c.$$

This proves the claim (cf. [J, Lemma 1.1]).

Consider the operators

$$P: H^{1}(X) \to H^{1}(X) \quad f \to \sum \langle f, f_{ni} \rangle f_{ni} / ||f_{ni}||_{2}^{2}.$$
$$i: H^{1}(\delta) \to H^{1}(X) \quad h_{n,i} \to f_{n,i}.$$

By the first part of the proof, $||i|| ||i^{-1}|| \le C^2$. Note that P is bounded iff $||(i^{-1}P)^*||_{BMO(X)}$ is bounded. But $(i^{-1}P)^*$ coincides with j. Hence $||P|| \le ||j|| \cdot C^2$. Unfortunately P is *not* idempotent. On the other hand by 15.4 for $f \in H^1(X)$ the following holds

$$||PPf - Pf|| \le \sum_{m \ne n} \min\{\varepsilon_n, \varepsilon_m\} \cdot 2^m \cdot 2^n ||f||.$$

By a standard perturbation argument, this is enough to conclude that $i(H^1(\delta))$ is isomorphic to a complemented subspace of $H^1(X)$, provided ε_m are chosen small enough.

2

Here we describe a class of Hardy spaces to which Theorem 1.4 applies. Our description will be rather brief and the reader is assumed to be familiar with the references [P, J-K, C-F-M-S, and Ma (or W)]. We let $\Omega \subseteq \mathbb{R}^n$ be a bounded Lipschitz domain, star-shaped with respect to 0. Let

$$L = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right)$$

be a uniformly elliptic operator with bounded real measurable coefficients (i.e. there exists $\lambda \in \mathbf{R}^+$ such that for $x \in \mathbf{R}^n$ and $y \in \Omega$

$$\frac{1}{\lambda}|x|^2 < \sum_{i,j=1}^n a_{ij}(y)x_ix_j < \lambda|x|^2.$$

A function u in Ω is called L-harmonic iff u is a weak solution of Lu=0. The general reference to elliptic operators in divergence form is [G-T, Chapter 8] and [C-F-M-S]). We let ω^x denote L-harmonic measure for Ω evaluated at $x \in \Omega$. (ω^0 will be denoted by ω .)

For $y \in \partial \Omega$, $\lambda > 0$, $B(y,r) := \{z \in \mathbb{R}^n : |y - z| < r\}$ and $\Delta(y,r) := B(y,r) \cap \partial \Omega$. In [C-F-M-S] it was established that *L*-harmonic measure on a Lipschitz domain Ω together with Euclidean metric on $\partial \Omega$ form a space of homogeneous type. More precisely they proved

Theorem 2.1. There exists $\eta \in \mathbb{R}^+$ such that for all $y \in \partial \Omega$, r > 0 we have

$$\omega(\Delta(y,r)) > \eta\omega(\Delta(y,2r))$$
.

We may thus define the atomic Hardy space $H^1(\partial \Omega, d, \omega)$ as in §1.

Theorem 2.2. The atomic Hardy space $H^1(\partial \Omega, d, \omega)$ contains a complemented copy of dyadic $H^1(\delta)$.

Proof. We wish to apply Theorem 1.4. It is enough to check that for each $x \in \partial \Omega$: $\omega(\{x\}) = 0$. Suppose to the contrary that there exists $x_0 \in \partial \Omega$ with $\omega(\{x_0\}) > 0$. Now one constructs $y_n \in \partial \Omega$, $r_n \in \mathbf{R}^+$ such that for $m \neq n$, $\Delta(y_n, r_n) \cap \Delta(y_m, r_m) = 0$ and $x_0 \in \Delta(y_n, 2r_n)$. By the doubling property there exists $\eta > 0$ such that for each n we have $\omega(\Delta(y_n, r_n)) > \eta\omega(\{x_0\})$ which contradicts the fact that ω is a finite measure.

We now turn to the converse questions:

Is $H^1(\partial\Omega,d,\omega)$ isomorphic to a complemented subspace of dyadic $H^1(\delta)$? To answer this question I was forced to search for different representations (or descriptions) of $H^1(\partial\Omega,d,\omega)$. It will be shown here that (under continuity assumptions of $((\partial/\partial x_i)a_{ij}(x)))$, $H^1(\partial\Omega,d,\omega)$ can be identified with a certain Hardy space $H^1_{\text{prob}}(\Omega,\omega)$ associated to diffisions in Ω . Finally, the probabilistic methods of B. Maurey [Ma] which were developed

Finally, the probabilistic methods of B. Maurey [Ma] which were developed further by T. Wolniewicz [W], can be used to show that $H^1_{\text{prob}}(\Omega,\omega)$ contains a complemented copy of $H^1(\delta)$.

The above-mentioned identification is done in two steps. We first consider

Hardy spaces associated to maximal functions. Fix $Q \in \partial \Omega$. Then $\Gamma(Q) = \{x \in \Omega: |x - Q| < 2 \operatorname{dist}(x, \partial \Omega)\}$. We let u be defined in Ω ; then $Nu(Q) := \sup\{u(x): x \in \Gamma(Q)\}$. Now we define $H^1(\Omega, \omega) := \{u: Lu = 0 \text{ and } Nu \in L^1(\partial \Omega, \omega)\}$. In Theorem 8.13 of [J-K], D. Jerison and C. Kenig showed in particular that the Banach spaces $H^1(\Omega, \omega)$ and $H^1(\partial \Omega, d, \omega)$ are isomorphic. Moreover, an explicit and natural isomorphism is given. As a consequence of

this isomorphism the following description of the dual space of $H^1(\Omega,\omega)$ is obtained.

Let $\Delta = \Delta(x, r)$ for some $x \in \partial \Omega$, r > 0. Let f be locally integrable with respect to ω and put

$$f_{\Delta} = \frac{1}{w(\Delta)} \int_{\Delta} f(x) dw(x).$$

f is said to belong to $BMO(\partial \Omega, \omega)$ iff

$$\sup \frac{1}{w(\Delta)} \int_{\Lambda} (f - f_{\Delta})^2 dw < \infty$$

where sup is extended over all "balls" $\Delta \subset \partial \Omega$. Then we have

Theorem 2.3 [J-K, p. 25]. There exists C > 0 such that for functions u, v on $\partial \Omega$ we have

$$\int_{\partial\Omega} u(y)v(y) dw \le C||u||_{H^{1}(\Omega,\omega)} \cdot ||v||_{BMO(\partial\Omega,\omega)}.$$

$$H^{1}(\Omega,\omega)^{*} \cong BMO(\partial\Omega,\omega).$$

Hardy spaces associated to diffusions in Ω . We let $(Y_t, \mathscr{F}_t, \sum, \mathbf{P}^x)$ be a strong Markov process with almost sure continuous trajectories, and with infinitesimal generator extending L. Moreover, we demand that for any regular subdomain $\Omega' \subseteq \Omega$ and any bounded measurable function $f: \partial \Omega' \to \mathbf{R}$ we have

$$\int_{\Sigma} f(Y_{\tau_{\Omega'}} d\mathbf{P}^{x} = \int_{\partial \Omega'} f(z) dw_{\Omega'}^{x}(z)$$

where $\tau_{\Omega'} := \inf\{t: Y_t \notin \Omega'\}$.

Finally, we assume that for each $x \in \Omega$, $\mathbf{P}^x\{\tau_\Omega < \infty\} = 1$. It is well known that we may obtain such a Markov process provided the functions a_{ij} are two times continuously differentiable (see [Øk, Dy, II]). Subsequently we denote \mathbf{P}^0 by \mathbf{P} and τ_Ω by τ . Now we are prepared to state

Definition 2.4. Let u be a function defined on Ω . Then

$$u^* := \sup_{t>0} |u(Y_{\tau \wedge t})|,$$

$$H^1_{\text{prob}}(\Omega, \omega) = \left\{ u: \Omega \to \mathbf{R}: Lu = 0 \text{ and } \int_{\Sigma} u^* d\mathbf{P} > \infty \right\}$$

and we let

$$||u||_{H^1_{\operatorname{prob}}(\Omega,\omega)} := \int_{\Sigma} u^* d\mathbf{P}.$$

 $H^1_{\text{prob}}(\Omega,\omega)$ will be (naturally) identified with $H^1(\Omega,\omega)$. Again, for our purposes any isomorphism between these two spaces would have been enough.

Theorem 2.5. There exists C > 0 such that for any L-harmonic function u the following holds:

$$\frac{1}{C}||u||_{H^1_{\operatorname{prob}}(\Omega,\omega)} \leq ||u||_{H^1(\Omega,\omega)} \leq C \cdot ||u||_{H^1_{\operatorname{prob}}(\Omega,\omega)}\,.$$

Remark. This theorem is an extension of a result of Burkholder, Gundy, Silverstein (see [P, p. 36]). All ingredients of the proof given below are already contained in the literature. The left-hand inequality in Theorem (2.5) may be treated in the same manner as the right-hand inequality in [P, Theorem 4]. But instead of elementary properties of the Poisson kernel for the unit disk, we have to use the following result.

Theorem 2.6 ([C-F-M-S], see also [D-J-K]). There exists $\eta > 0$ such that for each $x \in \Omega$ and for $y_0 \in \partial \Omega$ satisfying $|x - y_0| = \operatorname{dist}(x, \partial \Omega) =: s$ we obtain $w^x(\Delta(y_0, s)) > \eta$.

If we use Theorem 2.6 properly, the left-hand side of Theorem 2.5 may be proved as Proposition 2 in [W] (cf. also [P, pp. 37-40]). We only have to observe

Lemma 2.7. Let $A \subset \partial \Omega$ be closed. Let $B \subset \Omega$ be the sawtooth region above A (see [D-J-K, p. 99]). Then for each $x \in \Omega \setminus B$, $w^x(\zeta A) > \delta$ (where δ is independent of A, B or x).

Proof. Fix $x \in \Omega \setminus B$. Let

$$E(x) = \{ y \in \partial \Omega : |y - x| < 2 \operatorname{dist}(x, \partial \Omega) \}.$$

 $E(x)\cap \mathbb{C}A$ contains now a ball with radius comparable to $\operatorname{dist}(x\,,\partial\Omega)$ and center y_0 satisfying $|x-y_0|=\operatorname{dist}(x\,,\partial\Omega)$. Hence, by Theorem 2.6 and Theorem 2.7, we get

$$w^{x}(CA) \geq w^{x}(Ca \cap E(x)) \geq \delta$$
.

The right-hand inequality will be derived from (essentially) known results as well. It follows from duality theorems for $H^1(\Omega,\omega)$ and $H^1_{\text{prob}}(\Omega,\omega)$. Subsequently we will only indicate how proofs in [P] have to be modified to give the desired results.

Definition 2.8a. The Greens measure of Y_t with respect to Ω at x: G(x) is defined by

$$G(x,A) := \int_{\Sigma} \int_0^{\tau(\xi)} \chi_A(y_s) \, ds \, d\mathbf{P}^x(\xi) \, .$$

Remark. Let $\mu_{x,t}(A) := \mathbf{P}^x \{ y_t \in A, t < \tau \}$ then $G(x,A) = \int_0^\infty \mu_{x,t}(A) \, dt$ (cf. [Øk, p. 140]).

Definition 2.9b. For $x \in \Omega$, $y \in \partial \Omega$ we let for n > 2

$$g(x,y) := e_n \left(|x-y|^{2-n} - \int_{\partial \Omega} |z-y|^{2-n} dw^x(z) \right).$$

g(x,y) is called the Greens function of Ω . For n=2, $|x-y|^{2-n}$ and $|z-y|^{2-n}$ are substituted by $\log |x-y|$ and $\log |z-y|$.

Remark. The connection between Greens measure and Greens function is given by

$$G(x,A) = \int_A g(x,y) \, dy.$$

Next we recall some

Identites 2.10. Let u, v be L-harmonic in Ω . Then for $x \in \Omega$:

$$(10.1) \qquad \int_{\Omega} \left(\sum_{i,j}^{n} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} \right) (y) g(x,y) \, dy$$

$$= \int_{\partial \Omega} (u(y) - u(x)) (v(y) - v(x)) \, dw^{x}(y) \,,$$

$$(10.2) \qquad \int_{\Omega} \left(\sum_{i,j} a_{ij} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} \right) (y) g(x,y) \, dy$$

$$= \int_{\Sigma} \int_{0}^{\tau(\xi)} \left(\sum_{i,j} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \right) (y_{t}(\xi)) \, dt \, d\mathbf{P}^{x}(\xi) \,,$$

$$(10.3) \qquad \mathbf{E}^{x} ((u(y_{\tau}) - u(y_{t}))^{2} | y_{t}) = e_{n} \cdot \mathbf{E}^{x} \left(\int_{t}^{\tau} \left(\sum_{i,j} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} (y_{s}) \, ds \middle| y_{t} \right).$$

Remark. (10.1) is contained in [D-J-K, identity (7)]. (10.2) is a tautology using the connection Green measures and Green functions. (10.3) follows from (10.1), (10.2) as explained in [P, p. 86].

We will use identity (10.3) when necessary, otherwise we will use the argument of [P] as described there on pp. 89-91, to prove the following:

Lemma 2.11. Let u be a L-harmonic in Ω and let

$$\begin{split} (S_t(u))(\xi) &:= \left(\int_0^{t \wedge \tau(\xi)} \left(\sum a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} (y_s) \, ds \right)^{1/2}, \\ S_\infty(u)(\xi) &:= \lim_{t \to \infty} (S_t(u))(\xi). \end{split}$$

Then there exists C > 0 such that

$$\int_{\Sigma} S_{\infty}(u) d\mathbf{P} \le C \int u^* d\mathbf{P}.$$

Lemma 2.12. Let u, v be L-harmonic functions in Ω with boundary values \overline{u} , \overline{v} such that u(0) = v(0) = 0. Then

$$\begin{split} \int_{\partial\Omega} \overline{u}(x)\overline{v}(x)\,dw &\leq C \cdot \int_{\Sigma} S_{\infty}(u)d\mathbf{P} \cdot \left| \left| E\left(\int_{t}^{\tau} \left(\sum a_{ij} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right)(y_{s})\,ds \right| y_{t}\right) \right| \right|_{\infty}^{1/2}. \\ Proof. \text{ We assume } u(0) &= v(0) = 0 \text{ . Then by (10.1), (10.2),} \\ \int_{\partial\Omega} u(x)v(x)\,dw(x) &= \int_{\Sigma} \int_{0}^{\tau} \left(\sum a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right)(y_{t})\,dt\,d\mathbf{P} \\ &\leq \int_{\Sigma} \int_{0}^{\tau} \left(\sum a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right)^{1/2} \left(\sum a_{ij} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}\right)^{1/2} (y_{t})\,dt\,d\mathbf{P} \\ &\leq \left(\int_{\Sigma} \int_{0}^{\tau} \left(\sum a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right)(y_{t})S_{t}^{-1}(u)\,dt\,d\mathbf{P}\right)^{1/2} \\ &\cdot \left(\int_{\Sigma} \int_{0}^{\tau} \left(\sum a_{ij} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right)(y_{t})S_{t}(u)\,dt\,d\mathbf{P}\right)^{1/2}. \end{split}$$

Following [P] we observe that the first factor equals

$$\int_{\Sigma} \int_0^{\tau} \frac{\frac{d}{dt} (S_t^2(u))}{S_t(u)} dt d\mathbf{P}$$

and the second factor equals

$$\int_{\Sigma} \int_{0}^{\tau} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial u_{j}} \right) (y_{t}) S_{t}(u) dt d\mathbf{P}.$$

Using identity (10.3) we may treat both factors as in [P, pp. 94-95].

The argument needed for a proof of the next proposition is given by Jerison and Kenig in [J-K, Lemma 4.14 and Lemma 9.7] and will not be repeated here:

Proposition 2.13. Let $f \in L^1(\partial\Omega, \omega)$. Fix $x \in \Omega$, $f(x) := \int_{\partial\Omega} f(Q) dw^x(Q)$. Then

$$\sup_{x \in \Omega} \int_{\partial \Omega} |f(Q) - f(x)|^2 dw^x(Q) \le ||f||_{BMO(\partial \Omega, \omega)}^2.$$

Lemma 2.14. Let u be L-harmonic in Ω with boundary values u in $\partial \Omega$. Then for $t \geq 0$

$$\left\| \left| E\left(\int_{t}^{\tau} \left(\sum a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \right) (y_{s}) \, ds \right| y_{t} \right) \right\|_{\infty} \leq C \|u\|_{BMO}^{2}.$$

Proof. By (10.3) we may consider

$$||E(u(y_{\tau})^{2} - u(y_{t})^{2}|y_{t})||_{\infty} =: K.$$

 $K < C||u||_{BMO}$ if for each $G \subset \Omega$, $t \in \mathbb{R}$,

$$\frac{1}{\mu_t(G)} \int_{y_t^{-1}(G)} E(|u(y_\tau) - u(y_t)|^2 |y_t|) d\mathbf{P} \le C||u||_{BMO}^2$$

which holds iff

$$\frac{1}{\mu_t(G)} \int_G \left(\int_{\Sigma} \left| u(y_\tau) - u(z) \right|^2 d\mathbf{P}^z(\xi) \right) d\mu_t(z) \leq C \left| \left| u \right| \right|_{BMO}^2.$$

This is implied by the following inequality

$$\sup_{z \in \Omega} \int_{\partial \Omega} |u(x) - u(z)|^2 dw^z \le C||u||_{BMO}^2$$

which is true by Proposition 2.13.

Proof of Theorem 2.5 (right-hand side). Let U be a L-harmonic function in Ω . By the Duality Theorem 2.3 [J-K], there exists v, L-harmonic such that $||v||_{BMO(\partial\Omega,w)}=1$ and

$$\frac{1}{C}||u||_{H^1(\Omega,\omega)}=\int_\partial \Omega u(x)v(x)\,dw(x)\,,$$

where C is independent of u. Moreover, by Lemmas 2.12 and 2.14

$$\int_{\partial\Omega} u(x)v(x) dw(x) \le \int_{\Sigma} u^{*}(\xi) d\mathbf{P}(\xi) \left(\sup_{y \in \Omega} \int_{\partial\Omega} (v(x) - v(y))^{2} d\omega^{y}(x) \right)^{1/2}$$
$$\le \int_{\Sigma} u^{*}(\xi) d\mathbf{P}(\xi) \cdot C'$$

where C' is independent of v and u. Hence there exists $\widetilde{C} \in \mathbf{R}^+$ such that

$$||u||_{H^1(\Omega,\omega)} \leq \widetilde{C} \cdot ||u||_{H^1_{arch}(\Omega,\omega)}.$$

When combined with [J-K, Theorem 8.14], Theorem 2.5, asserts that any statement about the isomorphic structure of $H^1_{\text{prob}}(\Omega, \omega)$ implies the corresponding statement about the isomorphic structure of $H^1(\partial\Omega, d, \omega)$.

To apply Maurey's probabilistic methods we still need the results about the regularity of L-harmonic functions. These will be derived from properties of the kernel function to be defined now.

First, it is well known that the measures ω^x are mutually absolutely continuous with respect to each other. Let K(x,a) denote the Radon-Nikodym derivative of ω^x with respect to ω at $Q \in \partial \Omega$ (i.e. $K(x,Q) = d\omega^2(Q)/d\omega$.

Theorem 2.15 [C-F-M-S]. The map $u: x \to K(x, Q)$ satisfies Lu = 0 in Ω .

Lemma 2.16. For each $u \in H^1(\Omega, \omega)$, $\varepsilon > 0$ and r > 0, there exists $\delta > 0$ such that for each $x \in \Omega$ with $\operatorname{dist}(x, \Omega) > r$ we get

$$\sup_{|x-y|<\delta} |u(x)-u(y)| < \varepsilon ||u||_{H^1(\Omega,\omega)}.$$

Proof. We first show that there exists $\delta' > 0$ and C > 0, (depending only on r) such that for each $x \in \Omega$,

$$\sup_{Q} \int_{|x-y|<\delta'} K^2(y,Q) < C.$$

Indeed, by [J-K, Lemma 1.11], for $y \in \Omega$

$$K(y,Q) \le \frac{M}{\omega(\Delta(y_0,s))}$$

where $s=\operatorname{dist}(y\,,\partial\Omega)$ and $y_0\in\partial\Omega$ satisfies $|y-y_0|=s$. By Theorem 2.6 and Harnack's inequality for positive L-harmonic functions, for each s>0 there exists $\eta_s>0$ such that for each $x\in\partial\Omega$, we get $\omega(\Delta(z\,,s))>\eta_s$. Putting $\delta'=\frac{r}{4}$ we obtain

$$\sup_{Q\in\partial\Omega}\int_{|x-y|<\delta'}K^2(y,Q)\,dy\leq\eta_{r/4}^{-2}M^2.$$

Now we recall that K is L-harmonic as a function of y. By Di Giorgi's theorem (cf. [G-T, Theorem 8.24]), which dominates the α -Lipschitz constant

of an L-harmonic function by its L^2 -norm, we obtain C>0 such that for each $Q\in\partial\Omega$ and $x,y\in\Omega$

$$|K(x,Q) - K(y,Q)| \le \eta_{r/4}^{-2} |x - y|^{\alpha}$$

where α depends on r. Now choose $\delta > 0$ such that $\eta_{r/4}^{-2} \delta^{\alpha} < \varepsilon$ and estimate

$$\begin{aligned} |u(x) - u(y)| &\leq \int_{\partial \Omega} (K(x, Q) - K(y, Q)) u(Q) \, dw(Q) \\ &\leq \sup_{Q \in \partial \Omega} |K(x, Q) - K(y, Q)| \, ||u||_{L(\partial \Omega, \omega)} \\ &\leq \varepsilon ||u||_{H^1(\Omega, \omega)} \end{aligned}$$

provided $|x - y| < \delta$.

If we now feed the probabilistic machinery of B. Maurey [Ma] (see also Wolniewicz) [W] with Proposition 2.13 and Lemma 2.16, we obtain immediately

Theorem 2.20. The Hardy space $H^1_{\text{prob}}(\Omega, \omega)$ is isomorphic to a complemented subspace dyadic $H^1(\delta)$.

Hence by Theorem 2.10, Theorem 1.4 and the Banach space decomposition principle of Pelczynski we arrive at

Theorem 2.21. The Hardy spaces $H^1(\Omega, \omega)$, $H^1_{prob}(\Omega, \omega)$ and $H^1(\partial \Omega, d, \omega)$ are isomorphic to dyadic $H^1(\delta)$.

REFERENCES

- [C-F-M-S] L. Caffarelli, E. Fabes, S. Mortola and S. Salsea, Boundary behaviour of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621-640.
- [C-W] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [deG] M. de Guzman, Real variable methods in Fourier analysis, North-Holland, 1981.
- [D-J-K] B. Dahlberg, D. Jerison and C. Kenig, Area integral estimates for elliptic differential operators with non-smooth coefficients, Ark. Math. 22 (1984), 97-107.
- [Dy] E. B. Dynkin, Markov processes, Vol. II, Springer-Verlag, 1965.
- [F-J-K] E. Fabes, D. Jerison and C. Kenig, *Boundary behaviour of solutions of degenerate elliptic equations*, Conference on Harmonic Analysis, edited by W. Becker et al., Wadsworth, 1981.
- [GT] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1977.
- [J] P. W. Jones, Constructions with functions of bounded mean oscillation, Thesis, 1978.
- [J-K] D. Jerison and C. Kenig, Boundary behavior of harmonic in NTA domains, Adv. in Math. 46 (1982), 80-147.
- [Ma] B. Maurey, Isomorphismes entres espaces H^1 , Acta Math. 145 (1980), 79-120.
- [Mü] P. F. X. Müller, On subsequences of the Haar system and isomorphism between H¹ spaces, Studia Math. 85 (1987), 73-90.
- [M-S-1] A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270.
- [M-S-2] _____, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309.

- [P] K. E. Petersen, Brown motion, Hardy spaces and bounded mean oscillation, Cambridge Univ. Press, 1971.
- [Øk] B. Øksendal, Stochastic differential equations, Springer-Verlag, 1985.
- [W] T. Wolniewicz, On isomorphisms between Hardy spaces on complex balls, Ark. Math. 27 (1989), 155-168.
- [Wo] P. Wojtaszczyk, Hardy spaces on the complex ball are isomorphic to Hardy spaces on the disc $1 \le p \le \infty$, Ann. of Math. 118 (1983), 21–34.

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel